Modeling of Diesel Combustion , Soot and NO Emissions Based on a Modified Eddy Dissipation

نویسندگان

  • Sangjin Hong
  • Margaret S. Wooldridge
  • Hong G. Im
  • Dennis N. Assanis
  • Eric Kurtz
چکیده

2 Abstract`A three-dimensional reacting flow modeling approach is presented for predictions of compression ignition, combustion, NOx and soot emissions over a wide range of operating conditions in a diesel engine. The ignition/combustion model is based on a modified eddy dissipation concept (EDC) which has been implemented into the KIVA 3V engine simulation code. The modified EDC model is used to represent the thin sub-grid level reaction zone and the small scale molecular mixing processes. In addition, a realistic transition model based on the local normalized fuel mass fraction is implemented to shift from ignition to combustion. The modified EDC model is combined with skeletal n-heptane chemistry and a soot dynamics model which includes nucleation, surface growth and oxidation and coagulation processes. The NO formation and destruction processes are based on the extended Zeldovich reaction mechanism. The modeling results are calibrated against experimental engine data taken at benchmark conditions. The model is subsequently used to conduct parametric studies of the effects of injection timing and exhaust gas recirculation (EGR) on engine combustion and emissions. Predictions of cylinder pressure traces and heat release rates are in very good agreement with the experimental data (e.g. pressure predictions within 3 bar of the experimental data) for a range of injection timings, EGR rates and speeds. The experimental trends observed for the soot and NO emissions are also reproduced by the modeling results. Overall, the modeling approach demonstrates promising predictive capabilities at reasonable computational costs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Diesel Combustion, Soot and NO Emissions Based on a Modified Eddy Dissipation Concept

Combustion Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713456315 Modeling of Diesel Combustion, Soot and NO Emissions Based on a Modified Eddy Dissipation Concept Sangjin Hong a; Margaret S. Wooldridge a; Hong G. Im a; Dennis N. Assanis a; Eric Kurtz b a Mechanical Engineering Depart...

متن کامل

Multi-Dimensional Modeling of the Effects of Split Injection Scheme on Combustion and Emissions of Direct-Injection Diesel Engines at Full Load State

One of the important problems in reducing pollutant emission from diesel engines is trade-off between soot and NOx. Split injection is one of the most powerful tools that decrease soot and NOx emissions simultaneously. At the present work, the effect of split injection on the combustion process and emissions of a direct-injection diesel engine under full-load conditions is investigated by the c...

متن کامل

Three-Dimensional Modeling of Combustion Process, Soot and NOx formation In a Direct-injection Diesel Engine

This paper is presented to study the combustion process and emissions in a direct injection diesel engine. Computations are carried out using a three-dimensional model for flows, sprays, combustion and emissions in Diesel engines. Interactions between combustion and emissions with flow field are considered and it is shown that soot mass fraction increases at regions with low turbulence inten...

متن کامل

Multi-Dimensional Modeling of the Effects of Spilt Injection Scheme on Performance and Emissions of IDI Diesel Engines

One of the important problems in reducing of pollutant emission from DI and IDI diesel engines is trade-off  between soot and NOx. Split injection is one of the most powerful tools that makes the chance to shift the trade-off curve closer to origin.  At the present work, the effect of split injection on the combustion process and emissions of a cylinder IDI diesel engine under the specification...

متن کامل

Numerical Investigation on the Effect of Injection Timing on Combustion and Emissions in a DI Diesel Engine at Low Temperature Combustion Condition

One promising way to achieve low temperature combustion regime is the use of a large amount of cooled EGR. In this paper, the effect of injection timing on low temperature combustion process and emissions were investigated via three dimensional computational fluid dynamics (CFD) procedures in a DI diesel engine using high EGR rates. The results show when increasing EGR from low levels to levels...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006